跳至主要内容

3G Video SFP module Sinovo

l  Features

l  Up to 3GB/s,Video optical data links
l  Digital diagnostic SFF-8472 compliant
l  Compliant with SMPTE 424M/297M                          
l  Low Noise Wide dynamic range PIN-PD receiver
l  Metal package for lower EMI
l  +3.3V single power supply
l  Power consumption less than 1W 
l  LC duplex connector
l  AC coupling for data interface                                               
l  Operating case temp                                                              
Standard temp: 0~+70°C                                                                                                                  
l  Compliant with SFP MSA                                                                     

l  Absolute Maximum Ratings

Table 1- Absolute Maximum Ratings

Parameter
Symbol
Min.
Typical
Max.
Unit
Notes
       Supply Voltage
Vcc3
-0.5
-
+3.6
V

Storage Temperature
Ts
-40
-
85
°C

Operating Humidity
RH
+5%
-
+95
%



l  Recommended Operating Conditions

Table 2- Recommended operating Conditions
Parameter
Symbol
Min.
Typical
Max.
Unit
Notes
Operating
Standard
TC
0

+70
°C

Case Temperature
Industrial

 -40

+85
°C

Power Supply Voltage
Vcc
3.13
3.3
3.47
V

Power Supply Current
Icc
-
-
300
mA

Power Dissipation
Pd
-
-
1
W

Data Rate


3000

Mbps



l  Electrical Characteristics

Table 3- Electrical Characteristics
Parameter
Symbol
Unit
Min.
Typ.
Max.
Notes
Electrical Characteristics
Supply Current
ICC
mA
-
-
300

Differential  Data Input Swing

mV
200
-
2400
1
Differential  Data Output Swing

mV
750
900
1050
2
Differential Data input impedance

Ω
-
100
-
1
Signal Level(LVTTL H)

V
2.4
-
VCC

Signal Level(LVTTL L)

V
0
-
0.8

Note:
1.     DC coupled internally and terminated internally..
2.     CML output, AC coupled internally


l  Optical Characteristics

Table 4-Optical Characteristics
SOCS-1330-10   (1310nm DFB and PIN,10KM,NO DDMI)
SOCS-1330-10D  (1310nm DFB and PIN,10KM, DDMI)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Notes
Optical transmitter Characteristics
Data Rate

Mbps
-

3000

Center Wavelength Range
λC
nm
1290
1310
1330

Spectral Width(@-20dB)
Δλ
nm
-
-
7.7

Launch Optical Power
P0
dBm
-5
-
0
1
Extinction Ratio
ER
dB
8.2
-
-

Jitter Generation(pK-pK)

UI


0.1

Jitter Generation(RMS)

UI


0.01

Eye Diagram
Complies with STM - 16 eye masks when filtered

Optical receive Characteristics
Data Rate

Mbps
-

3000

Receiver Sensitivity

dBm
-
-
-20

Overload Input Optical Power
PIN
dBm
0
-
-

Center Wavelength Range
λc
nm
1260

1580

LOS
LOSA

dBm
-31
-
-

LOSD
-
-
-21

LOS Hysteresis

dB
0.5
-


Note:
1.     Coupled into 9/125 SMF.
2.     Measured with PRBS 223-1 test pattern @3Gbps.BER=10E-10.


Table 5-Optical Characteristics
SOCS-1530-40   (1550nm DFB and PIN,40KM,NO DDMI)
SOCS-1530-40D  (1550nm DFB and PIN,40KM, DDMI)
Parameter
Symbol
Unit
Min
Typ
Max
Notes
Optical transmitter Characteristics
Data Rate

Mbps
-

3000

Center Wavelength Range
λC
nm
1530
1550
1570

Launch Optical Power
P0
dBm
-5
-
0
1
Extinction Ratio
ER
dB
8.2
-
-

Jitter Generation(pK-pK)

UI


0.1

Jitter Generation(RMS)

UI


0.01

Eye Diagram
Complies with STM - 16 eye masks when filtered

Optical receive Characteristics
Data Rate

Mbps
-

3000

Receiver Sensitivity

dBm
-
-
-20
2
Overload Input Optical Power
PIN
dBm
0
-
-
2
Center Wavelength Range
λc
nm
1260

1580

LOS
LOSA

dBm
-31
-
-

LOSD
-
-
-21

LOS Hysteresis

dB
0.5
-
4


l  Recommended Interface Circuit



Figure 1, Recommended Interface Circuit

l  Recommended Host Board Power Supply Circuit


Figure 2, Recommended Host Board Power Supply Circuit



l  Pin arrangement


Figure 3, Pin View





Table 6-Pin Function Definitions
Name
FUNCTION
Plug
Seq.
Notes
1
VeeT
Transmitter Ground
1

2
Tx_Fault
Transmitter Fault Indicatio
3
Note 1
3
Tx_ Disable
Transmitter Disable
3
Note 2, Module disables on high or open
4
MOD-DEF2
Module Definition 2
3
Note 3, Data line for Serial ID.
5
MOD-DEF1
Module Definition 1
3
Note 3, Clock line for Serial ID.
6
MOD-DEF0
Module Definition 0
3
Note 3, Grounded within the module.
7
Rate Select
Not Connect
3
Function not available
8
LOS
Loss of Signal
3
Note 4
9
VeeR
Receiver Ground
1
Note 5
10
VeeR
Receiver Ground
1
Note 5
11
VeeR
Receiver Ground
1
Note 5
12
RD-
Inv. Received Data Out
3
Note 6
13
RD+
Received Data Out
3

14
VeeR
Receiver Ground
1
Note 5
15
VccR
Receiver Power
2
3.3V ± 5%
16
VccT
Transmitter Power
2
3.3V ± 5%
17
VeeT
Transmitter Ground
1
Note 5
18
TD+
Transmit Data In
3

19
TD-
Inv. Transmit Data In
3

20
VeeT
Transmitter Ground
1
Note 5
Notes:
1.     TX Fault is open collector output which should be pulled up externally with a 4.7K ~10KΩ resistor   on the host board to voltage between 2.0V and VCC+0.3V. Logic 0 indicates normal operation; logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
2.     TX Disable input is used to shut down the laser output per the state table below. It is pulled up within the module with a 4.7~ 10K resistor.
    Low (0- 0.8V):                          Transmitter on
    Between (0.8V and 2V):      Undefined
    High (2.0 – VccT):                      Transmitter Disabled
3.     MOD-DEF 0, 1, 2. These are the module definition pins. They should be pulled up with a 4.7~10K resistor on the host board to supply less than VccT+0.3V or VccR+0.3V.
MOD-DEF 0 is grounded by the module to indicate that the module is present.
MOD-DEF 1 is clock line of two wire serial interface for optional serial ID.
MOD-DEF 2 is data line of two wire serial interface for optional serial ID.
4.     LOS (Loss of signal) is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8V.
5.     These are the differential receiver outputs. They are AC-coupled 100Ω differential lines which should be terminated with 100Ω differential at the user SERDES. The AC coupling is done inside the module and thus not required on the host board.
6.     These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module.



l  Digital Diagnostic Memory Map


Figure 4, memory map






l  Mechanical Diagram


Figure 5, mechanical diagram
 

l  Ordering Information

Table 7-Ordering Information
Part Number
Product Description
SOCS-1330-20
SFP 1310nm,3G, 10-20KM, NO DDM ,070
SOCS-1530-40
SFP 1550nm,3G, 40KM, NO DDM ,070
SOCS-1330-10D
SFP 1310nm,3G, 10-20KM, DDM ,070
SOCS-1530-40D
SFP 1550nm,3G, 40KM, DDM ,070








l  Notice

SINOVO reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. SINOVO makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

l  Contact Information: 

Shenzhen Sinovo Telecom Co.,Ltd
TEL:+86(0)0755-3295 9919  FAX:+86(0)755 3295 9918
EMAIL: sales@sinovocorp.com
Factory Add : 4~5F,NO.658,Meijing West Rd,Dalang Town,Dongguan City, Guangdong,China

 Head Office: 11th Fl,Taibang Technology Building ,Gaoxing South 4th,

Science and Technology Park,Nanshan,Shenzhen

评论

此博客中的热门博文

25G/100G-PON 进展和演进趋势分析

“宽带中国”战略首次在国家层面将宽带网络定位为“新时期我国经济社会发展的战略性公共基础设施”,宽带 接入 网具有投资大,建设周期长,网络复杂的突出特点,是宽带网络的主要组成部分。随着 云计算 、高清视频、虚拟现实等新业务的迅猛发展,用户带宽以每5-6年10倍速度增长,现有接入网 技术 需要不断进行升级以适应更高的带宽和技术要求。基于点到多点拓扑的PON网络是主流宽带接入技术,PON网络技术已经经历了从EPON和GPON到10G PON的发展历程。当前全球宽带接入市场逐步进入千兆时代,未来10G入户将成为宽带接入建设的必然趋势。随着4K视频和5G技术的加速发展,10G-PON技术也难以满足未来的驻地接入和移动前传和回传的带宽需求,支持25G/100G更高速率的PON技术正逐步成为业界研究热点。 1 下一代PON标准进展 10G-PON之后PON技术的演进主要有2种方式,一种是单波长速率提升,波特率由10G提升到25G/40G等;另一种是采用多波长叠加方式,每波长 承载 的速率是10G/25G,多波长叠加到40G/80G/100G。 FSAN 组织在2011 年启动NGPON2 的标准研发,2015年完成标准制定。FSAN 组织选择了TWDM-PON 作为主要技术方案,采用4/8波长叠加方式,每波长采用10G TDM方式,在移动回传和商业客户中可选择点对点的WDM overlay 技术。NGPON2 的关键需求主要为40G 下行和40G/10G 上行, 实现20km 传输距离和1:64 分光。ITU标准组织也在关注单波25G的研究进展,预计近期将启动25G-PON的标准制定。 2013年IEEE开始启动NG-EPON研究,成立了IEEE ICCOM对NG-EPON的市场需求、技术方案进行分析,2015年3月发布了NG-EPON技术白皮书。2015年7月开始启动100G-EPON标准制定,命名为IEEE 802.3ca ,预计在2018年发布100G-EPON标准。100G-EPON目标定义了3种MAC层速率25G,50G和100G。其中25G分为非对称 10G/25G和对称25G/25G二种制式。 2 25G/100G-PON调制技术分析 由于接入网技术升级快,规模巨大,投入高,高性能和低成本一直是决定接入网技术演进的关键因素。其中光器...

40G QSFP+ SR4 LR4 ER Sinovo Telecom

40G QSFP + SR4 IEEE 802.3bm, 802.3ba, SFF-8436 4 voies optiques indépendantes Vitesse de ligne de 10,3 Gb / s, 14,1 Gb / s Interface QSFP + MPO Jusqu'à 300 m de distance 40G QSFP + LR4 IEEE 802.3bm, 802.3ba, SFF-8436 4 voies optiques indépendantes Emetteur: 4 x CWDM non refroidi DFB LD (1271 1291 1311 1331nm) Interface QSFP + Duplex LC Jusqu'à 10 km de distance 40G QSFP + ER4 IEEE 802.3bm, 802.3ba, SFF-8436 4 voies optiques indépendantes Interface QSFP + Duplex LC Jusqu'à 40 km de distance

100G QSFP28 DAC (cable de conexión directa) Y AOC (cable óptico activo) Sinovo

100G QSFP28 AOC (cable óptico activo) 100G QSFP28 a 100G QSFP28 AOC 100G QSFP28 a 2 x QSFP + (50G) AOC 100G QSFP28 a 4 x SFP28 (25G) AOC Interconectividad de alta densidad de 100Gb / s. Bajo peso para arquitecturas de alto conteo de puertos Radio de curvatura pequeño para una fácil instalación y manejo de fibra. Excelente integridad de señal Hasta 100M para Infiniband EDR, 4 x 25 y 100G Ethernet. 100G QSFP28 DAC (cable de conexión directa) 100G QSFP28 a 100G QSFP28 DAC 100G QSFP28 a 2 x QSFP + (50G) DAC 100G QSFP28 a 4 x SFP28 (25G) DAC Cables divisores de cobre pasivos Protección de 360 ​​° para un rendimiento EMI / EMC superior Totalmente compatible con todas las especificaciones relevantes de SFF y IEEE Longitudes disponibles desde 0.5M hasta 10M