跳至主要内容

QSFP+ 40G LR 10KM

40Gb/s QSFP+ PSM IR4 SOQP-3140-01
Optical Transceiver Module
Features

Four-channel full-duplex transceiver modules
Transmission data rate up to 11.2Gbit/s per channel
Up to 1.4km transmission of single mode fiber
Low power consumption <2.5Wmeet class 3
Operating case temperature 0°C to +70°C
3.3V power supply voltage
RoHS 6 compliant
Hot Pluggable QSFP form factor
Single MPO connector receptacle
Built-in digital diagnostic function


Applications

InfiniBand QDR, DDR and SDR
40G Ethernet
Proprietary High Speed Interconnections
Datacenter













Description
The SINOVO SOQP-3140-01 is a Four-Channel, Pluggable, Parallel, Fiber-Optic QSFP+ Transceiver for InfiniBand QDR/DDR/SDR,10G/8G/4G/2G fiber channel , PCIe and SAS Applications. The QSFP full-duplex optical module offers 4 independent transmit and receive channels, each capable of 10.3Gbps operation for an aggregate data rate of 40Gbps 1.4km using single mode fiber. These modules are designed to operate over single mode fiber systems using 1310nm FP laser array. An optical fiber ribbon cable with an MPO/MTPTM connector can be plugged into the QSFP module receptacle. QSFP+ PSM IR4 is one kind of parallel transceiver which provides increased port density and total system cost savings.


Absolute Maximum Ratings
The operation in excess of any absolute maximum ratings might cause permanent damage to this module.
Parameter 
Symbol 
 Min 
Max 
Unit 
Note 
Storage Temperature 
TST
-40
85
degC

Relative Humidity(non-condensing)
RH
0
85
%

Operating Case Temperature 
TOPC
0
70
degC

Supply Voltage 
VCC
-0.3
3.6
V

Input Voltage
Vin
-0.3
Vcc+0.3
V









Recommended Operating Conditions and Supply Requirements
Parameter 
Symbol 
Min 
Typical
Max 
 Unit 
Operating Case Temperature 
TOPC
0

70
degC
Power Supply Voltage 
VCC
3.13
3.3
3.47
V
Power Consumption

-
1.7
2.5
W
Data Rate
DR

10.3

Gbps
Data Speed Tolerance
∆DR
-100

+100
ppm
Link Distance with G.652
D
0

1.4
km








Optical Characteristics
All parameters are specified under the recommended operating conditions with PRBS31 data pattern unless otherwise specified.  

Parameter
Symbol
Min
Typical
Max
Unit
Notes
Receiver
Center Wavelength
λC
1270
1310
1350
nm

Damage Threshold
THd
3


dBm

Overload, each lane
OVL
1


dBm

Receiver Sensitivity in OMA, each Lane
SEN


-12.5
dBm

Difference in Receive Power between any two Lanes (OMA)
Prx,diff


5
dB

Signal Loss Assert Threshold
LOSA
-30


dBm

Signal Loss Deassert Threshold
LOSD


-15
dBm

LOS Hysteresis
LOSH
0.5

6
dB

Optical Return Loss
ORL


-12
dBm

Receive Electrical 3 dB upper Cutoff Frequency, each Lane
Fc


12
GHz







Parameter
Symbol
Min
Typical
Max
Unit
Notes
Transmitter
Center Wavelength
λC
1270
1310
1350
nm
1
RMS Spectral Width
λrms
-

3.5
nm
1
Average Launch Power, each lane
PAVG
-5.2
-0.5
1
dBm

Optical Modulation Amplitude (OMA)
POMA
-4.5
-0.5
2
dBm
1
Difference in Launch Power between any two lanes
Ptx,diff


5
dB

Launch Power in OMA minus Transmitter and Dispersion Penalty (TDP), each Lane
OMA-TDP
-9.7
-

dBm
1
Rise/Fall Time
Tr/Tf


50
ps

Extinction Ratio
ER
3.5


dB

Relative Intensity Noise
Rin


-128
dB/Hz

Optical Return Loss Tolerance
TOL


12
dB

Transmitter Reflectance
RT


-12
dB

Transmitter Eye Mask Margin
EMM
10


%
2
Average Launch Power OFF Transmitter, each Lane
Poff


-30
dBm

Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}

{0.25, 0.4, 0.45, 0.25, 0.28, 0.4}




Notes:
1.     Transmitter wavelength, RMS spectral width and power need to meet the OMA minus TDP specs to guarantee link performance.
2.     The eye diagram is tested with 1000 waveform.

 Electrical Specifications
Parameter
Symbol
Min
Typical
Max
Unit
Differential input impedance
Zin
90
100
110
ohm
Differential Output impedance
Zout
90
100
110
ohm
Differential input voltage amplitude aAmplitude
ΔVin
300

1100
mVp-p
Differential output voltage amplitude
ΔVout
500

800
mVp-p
Bit Error Rate
BR


E-12
Input Logic Level High
VIH
2.0

VCC
V
Input Logic Level Low
VIL
0

0.8
V
Output Logic Level High
VOH
VCC-0.5

VCC
V
Output Logic Level Low
VOL
0

0.4
V
Pin Descriptions
PIN
Logic
Symbol
Name/Description
Note
1

GND
Ground
1
2
CML-I
Tx2n
Transmitter Inverted Data Input

3
CML-I
Tx2p
Transmitter Non-Inverted Data output

4

GND
Ground
1
5
CML-I
Tx4n
Transmitter Inverted Data Input

6
CML-I
Tx4p
Transmitter Non-Inverted Data output

7

GND
Ground
1
8
LVTLL-I
ModSelL
Module Select

9
LVTLL-I
ResetL
Module Reset

10

VccRx
﹢3.3V Power Supply Receiver
2
11
LVCMOS-I/O
SCL
2-Wire Serial Interface Clock

12
LVCMOS-I/O
SDA
2-Wire Serial Interface Data

13

GND
Ground

14
CML-O
Rx3p
Receiver Non-Inverted Data Output

15
CML-O
Rx3n
Receiver Inverted Data Output

16

GND
Ground
1
17
CML-O
Rx1p
Receiver Non-Inverted Data Output

18
CML-O
Rx1n
Receiver Inverted Data Output

19

GND
Ground
1
20

GND
Ground
1
21
CML-O
Rx2n
Receiver Inverted Data Output

22
CML-O
Rx2p
Receiver Non-Inverted Data Output

23

GND
Ground
1
24
CML-O
Rx4n
Receiver Inverted Data Output
1
25
CML-O
Rx4p
Receiver Non-Inverted Data Output

26

GND
Ground
1
27
LVTTL-O
ModPrsL
Module Present

28
LVTTL-O
IntL
Interrupt

29

VccTx
+3.3 V Power Supply transmitter
2
30

Vcc1
+3.3 V Power Supply
2
31
LVTTL-I
LPMode
Low Power Mode

32

GND
Ground
1
33
CML-I
Tx3p
Transmitter Non-Inverted Data Input

34
CML-I
Tx3n
Transmitter Inverted Data Output

35

GND
Ground
1
36
CML-I
Tx1p
Transmitter Non-Inverted Data Input

37
CML-I
Tx1n
Transmitter Inverted Data Output

38

GND
Ground
1




Notes:
1. Module circuit ground is isolated from module chassis ground within the module. GND is the symbol for signal and supply (power) common for QSFP modules.

            2. The connector pins are each rated for a maximum current of 500mA.
ModSelL Pin
The ModSelL is an input pin. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP modules on a single 2-wire interface bus. When the ModSelL is “High”, the module will not respond to any 2-wire interface communication from the host. ModSelL has an internal pull-up in the module.
ResetL Pin
Reset. LPMode_Reset has an internal pull-up in the module. A low level on the ResetL pin for longer than the minimum pulse length (t_Reset_init) initiates a complete module reset, returning all user module settings to their default state. Module Reset Assert Time (t_init) starts on the rising edge after the low level on the ResetL pin is released. During the execution of a reset (t_init) the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by posting an IntL signal with the Data_Not_Ready bit negated. Note that on power up (including hot insertion) the module will post this completion of reset interrupt without requiring a reset.

LPMode Pin
 PSM IR4operate in the low power mode (less than 1.5 W power consumption) This pin active high will decrease power consumption to less than 1W.

ModPrsL Pin
ModPrsL is pulled up to Vcc on the host board and grounded in the module. The ModPrsL is asserted “Low” when the module is inserted and deasserted “High” when the module is physically absent from the host connector.

IntL Pin

IntL is an output pin. When “Low”, it indicates a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt by using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled up to Vcc on the host board.

Power Supply Filtering

The host board should use the power supply filtering shown in Figure1.
Figure1. Host Board Power Supply Filtering






Optical Interface Lanes and Assignment
The optical interface port is a male MPO connector .The four fiber positions on the left as shown in Figure 2, with the key up, are used for the optical transmit signals (Channel 1 through4). The fiber positions on the right are used for the optical receive signals (Channel 4 through 1). The central four fibers are physically present.

Figure 2. Optical Receptacle and Channel Orientation

Dignostic Monitoring Interface
Digital diagnostics monitoring function is available on all Sinovo QSFP+ PSM IR4. A 2-wire serial interface provides user to contact with module. The structure of the memory is shown in Figure 3. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page, such as Interrupt Flags and Monitors. Less time critical time entries, such as serial ID information and threshold settings, are available with the Page Select function. The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a one-time-read for all data related to an interrupt situation. After an interrupt, IntL, has been asserted, the host can read out the flag field to determine the affected channel and type of flag.

Parameter
Symbol
Min
Max
Unit
Notes
Temperature monitor absolute error
DMI_Temp
-3
+3
degC
Over operating temp
Supply voltage monitor absolute error
DMI _VCC
-0.1
0.1
V
Full operating range
Channel RX power monitor absolute error
DMI_RX
-3
3
dB
Per channel
Channel Bias current monitor
DMI_Ibias
-10%
10%
mA
Per channel
Channel TX power monitor absolute error
DMI_TX
-3
3
dB
Per channel
                                  Figure 3

EEPROM Serial ID Memory Contents:

Data Address
(Dec)
Name of Field
Description
Value(Hex)
Base ID Fields
128
Identifier
QSFP+

D
129
Extended Identifier
2.5W max. power consumption

80

130

Connector type

MPO Fiber Connector
C
131


Transceiver Application supported

80
132
0

133
0

134
Reserved
0
135
Intermediate distance
20
136
Shortwave laser w/o OFC (SN)
10
137
Single Mode (SM)
01
138
1200 Mbytes/Sec
80
139
Encoding
NRZ
03
140
BR, nominal
Nominal bit rate
67
141
Rate Select
QSFP Rate Select Version 1
0
142
Link Length(Standard SM Fiber)
1.4KM

1
143
Link Length(OM3)
Not supported
0
144
Link Length(OM2)
Not supported
0
145
Link Length(OM1)
0
146
Link Length(Cooper)
Not supported
0
147
Device Tech
Uncooled transmitter device;1310nm FP; No wavelength control; PINdetector;Transmitter not tunable
30
148






Vendor Name






SINOVO

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164
Electronic or optical interfaces for InfiniBand
4x  SDR Speed(2.5Gb/s),DDR Speed(5.0Gb/s),QDR Speed(10Gb/s).
7
165

Vendor OUI
68
44
166
124
7C
167
127
7F
168





Vendor PN







169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184
Vendor Rev
REV.1A
31
185
41
186
Wavelength
1310nm
66
187
58
188
Wavelength Tolerance
±50
27
189
10
190
Max Case Temp
Max Case Temp 70°C
46
191
Check Sum
Address 128-190

Extended ID Fields
192

Options
Rate Select, TX Disable, TX Fault, LOS, Warning indicators for: Temperature, VCC, RX power, TX Bias
0
193
0
194
0
195
DE
196



Vendor SN



Serialnumber provided by vendor(ASCII)

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

Date Code

Programmed with manufacturing date

213

214

215

216

217

218
Lot Number
Programmed with manufacturing lot

219

220
Diagnostic Monitoring Type

8
221
Enhanced Options

0
222
Reserved
Reserved
Reserved
223
CC_EXT
Address 192-222

Vendor Specific ID Fields
224-255
Vendor Specific EEPROM




Mechanical Dimensions
说明: QQ图片20150123155920.png
Figure 4.
Attention: To minimize MPO connection induced reflections, an MPO receptacle with 8-degree angled end-face is utilized for this product.  A male MPO connector with 8-degree end-face should be used with this product as illustrated in Figure 5.
                                  Figure 5.




ESD
This transceiver is specified as ESD threshold 1KV for high speed data pins and 2KV for all others electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM).  However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.  

Laser Safety
This is a Class 1 Laser Product according to IEC 60825-1:2007.  This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007)

Order Information
Part Number
Product Description
SOQP-3140-01
4X10.3G QSFP+ IR4, MPO connector, 1.4Km using single mode fiber
Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by SINOVO before they become applicable to any particular order or contract. In accordance with the SINOVO policy of continuous improvement specifications may change without notice. The publication of information in this data sheet does not imply freedom from patent or other protective rights of SINOVO or others. Further details are available from any SINOVO sales representative.

Contact

Shenzhen Sinovo Telecom Co. Ltd
Website:www.sinovocorp.com  Email:sales@sinovocorp.com
Tel:+86(0)0755-3295 9919   Fax:+86(0)755 3295 9918
Head Quarter:11/F,Taibang Technology Building,Gaoxin South 4th,Science and Technology Park South,Nanshan,Shenzhen,China 518040


评论

此博客中的热门博文

25G/100G-PON 进展和演进趋势分析

“宽带中国”战略首次在国家层面将宽带网络定位为“新时期我国经济社会发展的战略性公共基础设施”,宽带 接入 网具有投资大,建设周期长,网络复杂的突出特点,是宽带网络的主要组成部分。随着 云计算 、高清视频、虚拟现实等新业务的迅猛发展,用户带宽以每5-6年10倍速度增长,现有接入网 技术 需要不断进行升级以适应更高的带宽和技术要求。基于点到多点拓扑的PON网络是主流宽带接入技术,PON网络技术已经经历了从EPON和GPON到10G PON的发展历程。当前全球宽带接入市场逐步进入千兆时代,未来10G入户将成为宽带接入建设的必然趋势。随着4K视频和5G技术的加速发展,10G-PON技术也难以满足未来的驻地接入和移动前传和回传的带宽需求,支持25G/100G更高速率的PON技术正逐步成为业界研究热点。 1 下一代PON标准进展 10G-PON之后PON技术的演进主要有2种方式,一种是单波长速率提升,波特率由10G提升到25G/40G等;另一种是采用多波长叠加方式,每波长 承载 的速率是10G/25G,多波长叠加到40G/80G/100G。 FSAN 组织在2011 年启动NGPON2 的标准研发,2015年完成标准制定。FSAN 组织选择了TWDM-PON 作为主要技术方案,采用4/8波长叠加方式,每波长采用10G TDM方式,在移动回传和商业客户中可选择点对点的WDM overlay 技术。NGPON2 的关键需求主要为40G 下行和40G/10G 上行, 实现20km 传输距离和1:64 分光。ITU标准组织也在关注单波25G的研究进展,预计近期将启动25G-PON的标准制定。 2013年IEEE开始启动NG-EPON研究,成立了IEEE ICCOM对NG-EPON的市场需求、技术方案进行分析,2015年3月发布了NG-EPON技术白皮书。2015年7月开始启动100G-EPON标准制定,命名为IEEE 802.3ca ,预计在2018年发布100G-EPON标准。100G-EPON目标定义了3种MAC层速率25G,50G和100G。其中25G分为非对称 10G/25G和对称25G/25G二种制式。 2 25G/100G-PON调制技术分析 由于接入网技术升级快,规模巨大,投入高,高性能和低成本一直是决定接入网技术演进的关键因素。其中光器...

40G QSFP+ SR4 LR4 ER Sinovo Telecom

40G QSFP + SR4 IEEE 802.3bm, 802.3ba, SFF-8436 4 voies optiques indépendantes Vitesse de ligne de 10,3 Gb / s, 14,1 Gb / s Interface QSFP + MPO Jusqu'à 300 m de distance 40G QSFP + LR4 IEEE 802.3bm, 802.3ba, SFF-8436 4 voies optiques indépendantes Emetteur: 4 x CWDM non refroidi DFB LD (1271 1291 1311 1331nm) Interface QSFP + Duplex LC Jusqu'à 10 km de distance 40G QSFP + ER4 IEEE 802.3bm, 802.3ba, SFF-8436 4 voies optiques indépendantes Interface QSFP + Duplex LC Jusqu'à 40 km de distance

100G QSFP28 DAC (cable de conexión directa) Y AOC (cable óptico activo) Sinovo

100G QSFP28 AOC (cable óptico activo) 100G QSFP28 a 100G QSFP28 AOC 100G QSFP28 a 2 x QSFP + (50G) AOC 100G QSFP28 a 4 x SFP28 (25G) AOC Interconectividad de alta densidad de 100Gb / s. Bajo peso para arquitecturas de alto conteo de puertos Radio de curvatura pequeño para una fácil instalación y manejo de fibra. Excelente integridad de señal Hasta 100M para Infiniband EDR, 4 x 25 y 100G Ethernet. 100G QSFP28 DAC (cable de conexión directa) 100G QSFP28 a 100G QSFP28 DAC 100G QSFP28 a 2 x QSFP + (50G) DAC 100G QSFP28 a 4 x SFP28 (25G) DAC Cables divisores de cobre pasivos Protección de 360 ​​° para un rendimiento EMI / EMC superior Totalmente compatible con todas las especificaciones relevantes de SFF y IEEE Longitudes disponibles desde 0.5M hasta 10M