跳至主要内容

Sinovo Telecom 100G CFP2 LR Datasheet



 SOFP2-LR4-10
RoHS Compliant 100Gb/s CFP2 LR4 10km Optical Transceiver

PRODUCT FEATURES
l  Duplex LC receptacle optical interface
l  Single +3.3V power supply
l  Hot-pluggable
l  Operating optical data rate up to 112Gbps
l  Operating electrical serial data rate up to 27.952493Gbps
l  4 parallel electrical serial interface
l  AC coupling of CML signals
l  PIN ROSA
l  Low power dissipation(Max:9W)
l  Built in digital diagnostic function
l  Operating case temperature range:0 to 70
l  Compliant with 100GBASE-LR4 and OTU4
l  MDIO Communication Interface
l  Compatible with all kinds of commercial ONT

APPLICATIONS
l  Local Area Network(LAN)
l  Wide Area Network(WAN)
l  Switch to router interface
l  ITU-T OTU4 OTL4.4 applications

Standards
l  Compliant with IEEE 802.3ba
l  Compliant with CFP2 MSA hardware specifications
l  Compliant with CFP2 MSA management specifications
l  Compliant with ITU-T G709/Y.1331
l  Compliant with RoHS

 Functional Description
      The 100G CFP2 LR4 optical transceiver integrates the transmit and receive path onto one module. On the transmit side, four lanes of serial data streams are recovered, retimed,and passed on to four laser drivers, which control four electric-absorption modulated lasers (EMLs) with 1296, 1300, 1305, and 1309 nm center wavelengths. The optical signals are then multiplexed into a single-mode fiber through an industry-standard LC connector.On the receive side, four lanes of optical data streams are optically demultiplexed by an integrated optical demultiplexer. Each data steam is recovered by a PIN photodetector and transimpedance amplifier, retimed, and passed on to an output driver. This module features a
hot-pluggable electrical interface, low power consumption, and MDIO management interface.
Block diagram

Absolute Maximum Ratings
Parameter
Symbol
Min
Typ
Max
Units
Notes
Storage Temperature
Tst
-40

+85
ºC

Supply Voltage
Vcc
-0.5

+3.6
V

Operating Relative Humidity
Rh
+5

+95
%


Recommended Operating Conditions
Parameter
Symbol
Min
Typ
Max
Units
Notes
Operating Case Temperature
TC
0
-
+70
°C

Power Supply Voltage
VCC
3.14
3.3
3.46
V

Data rate


103.125
112
Gb/s


Specifications
(tested under recommended operating conditions,unless otherwise noted)
Parameter
Symbol
Unit
Min
Typ
Max
Notes
Voltage Supply Electrical Characteristics
Supply Current
Tx Section
Icc
A


3.75
1
Rx Section
Power Supply Noise
Vrip



2% DC
1MHz
3% 1
10MHz

Total
Dissipation  Power
Class1
Pw
W


3

Class2
6
Class3
9
Class4
12
Low Power Mode Dissipation
Plow
W


2

Inrush Current
Class1

and
I-inrush
mA/usec


100

Turn-off Current
Class2
I-turnoff
mA/usec
-100



Inrush Current
Class3

and

I-inrush
mA/usec


200

Turn-off Current
Class4
I-turnoff
mA/usec
-200



Different Signal Electrical Characteristics
Single Ended Data Input Swing

mV
20

525

Single Ended Data Output Swing

mV
180

385

Differential  Signal  Output
Resistance

Ω
80

120

Differential  Signal  Input
Resistance

Ω
80

120

3.3V LVCMOS Electrical Characteristics
Input High Voltage
3.3VIH
V
2.0

Vcc+0.3

Input Low Voltage
3.3VIL
V
-0.3

0.8

Input Leakage Current
3.3IIN
uA
-10

+10

Output   High   Voltage
(IOH=100uA)
3.3VOH
V
Vcc-0.2



Output Low Voltage (IOL=100uA)
3.3VOL
V


0.2

Minimum Pulse Width of Control
Pin Signal
t_CNTL
us
100



1.2V LVCMOS Electrical Characteristics
Input High Voltage
1.2VIH
V
0.84

1.5

Input Low Voltage
1.2VIL V
0.3
1.2VIL V

0.36

Input Leakage Current
1.2IIN
uA
-100

+100

Output High Voltage
1.2VOH
V
1.0

1.5

Output Low Voltage
1.2VOL
V
-0.3

0.2

Output High Current
1.2IOH
mA


-4

Output Low Current
1.2IOL
mA
+4



Input Capacitance
Ci
pF


10

Optical Transmitter Characteristics
Signaling rate, each lane

GBd
25.78125 ±100 ppm
100GBase-LR4
27.9525 ±20 ppm
OTU4
Four Lane Wavelength Range
λ1
nm
1294.53
1295.56
1296.59

λ2
1299.02
1300.05
1301.09

λ3
1303.54
1304.58
1305.63

λ4
1308.09
1309.14
1310.19

Total launch power

dBm


10.5
100GBase-LR4


10
OTU4
Average launch power, each lane
Pavg
dBm
-4.3

4.5
2
-0.6

4
Optical modulation amplitude, each lane (OMA)2
OMA
dBm
-1.3

4.5

Difference in launch power between any two lanes (OMA)

dB


5

Extinction ratio
ER
dB
4


100GBase-LR4
4

6.5
OTU4
Side-mode suppression ratio
SMSR
dB
30



Transmitter and dispersion penalty, each lane
TDP
dB


2.2

Optical return loss tolerance

dB


20

Transmitter reflectance3

dB


12

Transmitter eye mask {X1, X2, X3, Y1, Y2, Y3}


{0.25, 0.4, 0.45, 0.25, 0.28, 0.4}
100GBase-LR4
Optical Receiver Characteristics
Receive Rate for Each Lane

Gbps

25.78125
27.9525

Overload Input Optical Power
Pmax
dBm
5.5


3
Average Receive Power for Each
Lane
Pin
dBm
-8.6 + ∆

3
4, 5, 9
Receive Power In OMA for Each
Lane
PinOMA
dBm


3

Difference in Receive Power in
OMA between Any Two Lanes

dBm




Receiver Sensitivity in OMA for
Each Lane
SOMA
dBm


-8.6 + ∆
6
Stressed Receiver Sensitivity in
OMA for Each Lane

dBm


-6.8 + ∆
7, 8, 9
Note1. The supply current includes CFP2 module’s supply current and test board working
current.
Note2. Average launch power, each lane (min) is informative for 100GBase-LR4, not the principal indicator of signal strength.
Note3.The receiver shall be able to tolerate , without damage, continuous exposure to an
optical input signal having this average power level
Note4. The average receive power , each lane (max) for 100GBASE-ER4 is larger than the
100BASE-ER4 transmitter value to allow compatibility with 100BASE-LR4 units at short
distances
Note5. Average receive power, each lane (min) is informative and not the principal indicator
of signal strength. A received power below this value cannot be compliant; however, a value
above this does not ensure compliance
Note6. Receiver sensitivity (OMA), each lane (max) is informative
Note7. Measured with conformance test signal at TP3 for BER=10-12
Note8. conditions of stressed receiver sensitivity test: vertical eye closure penalty for each
lane is 1.8dB;stressed eye J2 jitter for each lane is 0.3UI; stressed eye J9 jitter for each lane
is 0.47UI.
Note9.  ∆ = ADP ROSA sensitivity (a negative number) - (-8.6dBm) - (-1.9dB (DeMUX insertion loss)) - δ (a negotiable additional loss).


Hardware Control Pins
The CFP2 Module support real-time control functions via hardware pins, listed in the following
table: Hardware Control Pins
Hardware Control Pins
Pin
Symbol
Description
I/O
Logic
H
L
Pull-up
/down
17
PRG_CNTL1
Programmable Control 1
MSADefault:TRXIC_RST
n , TX&RX ICs reset,
“0”:reset;”1”
I
3.3V
LVCMOS
per CFP MSA
Management
Interface
Specification

Pull-Up
Note1
18

PRG_CNTL2
Programmable Control 2
MSADefault :Hardware
Interlock LSB



I

3.3V
LVCMOS
Pull-Up
Note1
19
PRG_CNTL3
Programmable Control 3
MSA Default:Hardware
Interlock MSB

I
3.3V
LVCMOS
Pull-Up
Note1
26












MOD_LOPWR
Module Low Power Mode
I
3.3V
LVCMO
S
Low
Power
Enabl
e
Pull-Up
Note1










Low
Power
Enabl
e
Pull-Up
Note1
28
MOD_RSTn
Module Reset(Invert)
I
3.3V
LVCMO
S
Enabl
e
Reset
Pull-Down
Note2
Note1: Pull-Up resistor (4.7KOhm to 10 KOhm) is located within the CFP2 module
Note2: Pull-Down resistor (4.7KOhm to 10 kOhm) is located within the CFP2 module

Hardware Alarm Pins
The CFP2 Module supports alarm hardware pins listed in the following table: Hardware Alarm
Pins
Hardware Alarm Pins
Pin
Symbol
Description
I/O
Logic
H
L
Pull-up
/down
n
20

PRG_ALRM
1
Programmable
Alarm 1
MSA
Default:HIPWR_ON
0

3.3V
LVCMO
S



Active High per
MDIO document


21
PRG_ALRM
2
Programmable
Alarm 2
MSA
default:MOD_READY
, Ready
State has been
reached
0
3.3V
LVCMO
S

22
PRG_ALRM
3
Programmable
Alarm 3
MSA Default: MOD_FAULT
0
3.3V
LVCMO
S

27
MOD_ABS
Module Absent
0
3.3V
LVCMO
S
Absent
Present
Pull-Down
Note1
25
RX_LOS
Receiver Loss of
Signa
0
3.3V
LVCMO
S
Loss of
Signal
OK

Note1: Pull-Down resistor (<100Ohm) is located within the CFP2 module. Pull-up should be
located on the host
Management Interface Pins(MDIO)
The CFP2 Module supports alarm, control and monitor functions via an MDIO bus. The CFP2
MDIO pins are listed in the following table: Management Interface Pins
Management Interface Pins
Pin
Symbol
Description
I/O
Logic
H
L
Pull-up
/down
n
29
GLB-ALRMn
Global Alarm
I
3.3V
LVCMOS
OK
Alarm

32
MDIO
Management interface bidirectional
data
I/O
1.2V LVCMOS



31
MDC
Management interface clock input
I
1.2V LVCMOS



33
PRTADR0
MDIO physical port address bit 0
I
1.2V LVCMOS
Per MDIO

34
PRTADR1
MDIO physical port address bit 1
I
1.2V LVCMOS

35
PRTADR2
MDIO physical port address bit 2
I
1.2V LVCMOS




Hardware Signaling Pin Timing Requirements
Timing Parameters for CFP2 hardware Signal Pins are listed in the following table
Parameter
Symbol
Unit
Min.
Max.
Notes
Hardware MOD_LOPWR assert
t_MOD_LOPWR_assert
ms

1

Hardware MOD_LOPWR deassert
t_MOD_LOPWR_deassert
s

60
Stored in NVR register 8072h
Management interface clock period
t_prd
ns
250

MDC is 4 MHz rate or less
Host MDIO setup time
t_setup
ns
10


Host MDIO hold time
t_hold
ns
10


CFP2 MDIO delay time
t_delay
ns
0
175

GLB_ALRM assert time
GLB_ALRMn_assert
ms

150
A logic “OR” of associated MDIO alarm and
status registers
GLB_ALRM deassert time
GLB_ALRMn_deassert
ms

150
A logic “OR” of associated MDIO alarm and
status registers
Minimum pulse width of control pin signal
t_CNTL
μs
100


Initialization time from reset
t_initialize
s

2.5

TX_Disable assert time
t_deassert
μs

100
Transmitter disable, application specific
TX_Disable deassert time1
t_assert
ms

5
Time from Tx Disable pin deasserted until CFP2
module enters the Tx-turn-on state
Stored in NVR register 8073h
RX_LOS assert time
t_loss_assert
μs

100
From occurrence of loss of signal to assertion
of RX_LOS
RX_LOS deassert time
t_loss_deassert
μs

100
From occurrence of return of signal to deassert
of RX_LOS




High Speed Electrical Characteristics
Reference Clock Characteristics
Parameter
Symbol
Unit
Min.
Max.
Notes
Impedance
Zd
Ω
90
110

Frequency

MHz
161.1328125
1/64 of electrical lane rate
Frequency Stability
f
ppm
-100
100
For Ethernet
-20
20
For Telecom
Differential Voltage
VDIFF
mV
400
900
Peak to Peak Differential
Common mode noise (rms)

mV

17.5

RMS jitter

ps

10
Random Jitter Over frequency band of 10KHZ<f<10MHZ
Clock Duty Cycle

%
40
60






Pin Description
The CFP2 connector has 104 pins which are arranged in Top and Bottom rows. The pin map is shown in Table below.


Table: Pin description
Pin
Name
I/O
Logic
Description
1
GND



2
(TX_MCLKn)
O
CML
For optical waveform testing. Not for normal use.
3
(TX_MCLKp)
O
CML
For optical waveform testing. Not for normal use.
4
GND



5
N.C


No Connect
6
N.C


7
3.3V_GND


3.3V Module Supply Voltage Return Ground, can be separate or tied together with Signal Ground
8
3.3V_GND


9
3.3V


3.3V Module Supply Voltage
10
3.3V


11
3.3V


12
3.3V


13
3.3V_GND


3.3V Module Supply Voltage Return Ground, can be separate or tied together with Signal Ground
14
3.3V_GND


15
VND_IO_A
I/O

Module Vendor I/O A. Do Not Connect!
16
VND_IO_B
I/O

Module Vendor I/O A. Do Not Connect!
17
PRG_CNTL1
I
LVCMOS w/ PUR
Programmable Control 1 set over MDIO, MSA Default: TRXIC_RSTn, TX & RX ICs reset, "0": reset, "1" or NC: enabled = not used
18
PRG_CNTL2
I
LVCMOS w/ PUR
Programmable Control 2 set over MDIO, MSA Default: Hardware Interlock LSB, "00": ≤3W, "01": ≤6W, "10": ≤9W, "11" or NC: ≤12W = not used
19
PRG_CNTL3
I
LVCMOS w/ PUR
Programmable Control 2 set over MDIO, MSA Default: Hardware Interlock LSB, "00": ≤3W, "01": ≤6W, "10": ≤9W, "11" or NC: ≤12W = not used
20
PRG_ALRM1
O
LVCMOS
Programmable Alarm 1 set over MDIO, MSA Default: HIPWR_ON, "1": module power up completed, "0": module not high powered up
21
PRG_ALRM2
O
LVCMOS
Programmable Alarm 2 set over MDIO, MSA Default: MOD_READY, "1": Ready, "0": not Ready.
22
PRG_ALRM3
O
LVCMOS
Programmable Alarm 3 set over MDIO, MSA Default: MOD_FAULT, fault detected, "1": Fault, "0": No Fault
23
GND



24
TX_DIS
I
LVCMOS w/ PUR
Transmitter Disable for all lanes, "1" or NC = transmitter disabled, "0" = transmitter enabled
25
RX_LOS
O
LVCMOS
Receiver Loss of Optical Signal, "1": low optical signal, "0": normal condition
26
MOD_LOPWR
I
LVCMOS w/ PUR
Module Low Power Mode. "1" or NC: module in low power (safe) mode, "0": power-on enabled
27
MOD_ABS
O
GND
Module Absent. "1" or NC: module absent, "0": module present, Pull Up Resistor on Host
28
MOD_RSTn
I
LVCMOS w/ PDR
Module Reset. "0" resets the module, "1" or NC = module enabled, Pull Down Resistor in Module
29
GLB_ALRMn
O
LVCMOS
Global Alarm. “0": alarm condition in any MDIO Alarm register, "1": no alarm condition, Open Drain, Pull Up Resistor on Host
30
GND



31
MDC
I
1.2V CMOS

Management Data Clock (electrical specs as per IEEE Std 802.3ae-2008 and ba-2010)
32
MDIO
I/O
1.2V CMOS
Management Data I/O bi-directional data (electrical specs as per IEEE Std 802.3ae-2008 and ba-2010)
33
PRTADR0
I
1.2V CMOS
MDIO Physical Port address bit 0
34
PRTADR1
I
1.2V CMOS
MDIO Physical Port address bit 1
35
PRTADR2
I
1.2V CMOS
MDIO Physical Port address bit 2
36
VND_IO_C
I/O

Module Vendor I/O C. Do Not Connect!
37
VND_IO_D
I/O

Module Vendor I/O D. Do Not Connect!
38
VND_IO_E
I/O

Module Vendor I/O E. Do Not Connect!
39
3.3V_GND



40
3.3V_GND



41
3.3V


3.3V Module Supply Voltage
42
3.3V


43
3.3V


44
3.3V


45
3.3V_GND



46
3.3V_GND



47
N.C



No Connect

48
N.C




49
GND




50
(RX_MCLKn)

O
CML
For optical waveform testing. Not for normal use.
51
(RX_MCLKp)

O
CML
52
GND



53
GND



54
N.C.



55
N.C.



56
GND



57
RX0p


25 Gbps receiver data; Lane 0
58
RX0n


25 Gbps receiver data bar; Lane 0
59
GND



60
RX1p


25 Gbps receiver data; Lane 1
61
RX1n


25 Gbps receiver data bar; Lane 1
62
GND



63
N.C.



64
N.C.



65
GND



66
N.C.



67
N.C.



68
GND



69
RX2p


25 Gbps receiver data; Lane 2
70
RX2n


25 Gbps receiver data bar; Lane 2
71
GND



72
RX3p


25 Gbps receiver data; Lane 3
73
RX3n


25 Gbps receiver data bar; Lane 3
74
GND



75
N.C.



76
N.C.



77
GND



78
(REFCLKp)

CML
Module reference clock. No connect.
79
(REFCLKn)

CML
Module reference clock. No connect.
80
GND



81
N.C.



82
N.C.



83
GND



84
TX0p


25 Gbps transmitter data; Lane 0
85
TX0n


25 Gbps transmitter data bar; Lane 0
86
GND



87
TX1p


25 Gbps transmitter data; Lane 1
88
TX1n


25 Gbps transmitter data bar; Lane 1
89
GND



90
N.C.



91
N.C.



92
GND



93
N.C.



94
N.C.



95
GND



96
TX2p


25 Gbps transmitter data; Lane 2
97
TX2n


25 Gbps transmitter data bar; Lane 2
98
GND



99
TX3p


25 Gbps transmitter data; Lane 3
100
TX3n


25 Gbps transmitter data bar; Lane 3
101
GND



102
N.C.



103
N.C.



104
GND






CFP2 Lane Assignment
Lane
Center Frequency
Center Wavelength
Wavelength Range
L0
231.4 THz
1295.56 nm
1294.53 to 1296.59 nm
L1
230.6 THz
1300.05 nm
1299.02 to 1301.09 nm
L2
229.8 THz
1304.58 nm
1303.54 to 1305.63 nm
L3
229.0 THz
1309.14 nm
1308.09 to 1310.19 nm



Mechanical Diagram
 


ORDERING INFORMATION

Part Number
Description
SOFP2-LR4-10
CFP2 4*25G 10km, 0~70, with DDM



For More Information
Contact

Shenzhen Sinovo Telecom Co. Ltd

Website:www.sinovocorp.com  Email:sales@sinovocorp.com
Tel:+86(0)0755-3295 9919   Fax:+86(0)755 3295 9918
Factory ADD:  4~5F,NO.658,Meijing West Rd,Dalang Town,Dongguan City, Guangdong,China
Head Quarter:11/F,Taibang Technology Building,Gaoxin South 4th,Science and Technology Park South,Nanshan,Shenzhen,China 518040


评论

此博客中的热门博文

25G/100G-PON 进展和演进趋势分析

“宽带中国”战略首次在国家层面将宽带网络定位为“新时期我国经济社会发展的战略性公共基础设施”,宽带 接入 网具有投资大,建设周期长,网络复杂的突出特点,是宽带网络的主要组成部分。随着 云计算 、高清视频、虚拟现实等新业务的迅猛发展,用户带宽以每5-6年10倍速度增长,现有接入网 技术 需要不断进行升级以适应更高的带宽和技术要求。基于点到多点拓扑的PON网络是主流宽带接入技术,PON网络技术已经经历了从EPON和GPON到10G PON的发展历程。当前全球宽带接入市场逐步进入千兆时代,未来10G入户将成为宽带接入建设的必然趋势。随着4K视频和5G技术的加速发展,10G-PON技术也难以满足未来的驻地接入和移动前传和回传的带宽需求,支持25G/100G更高速率的PON技术正逐步成为业界研究热点。 1 下一代PON标准进展 10G-PON之后PON技术的演进主要有2种方式,一种是单波长速率提升,波特率由10G提升到25G/40G等;另一种是采用多波长叠加方式,每波长 承载 的速率是10G/25G,多波长叠加到40G/80G/100G。 FSAN 组织在2011 年启动NGPON2 的标准研发,2015年完成标准制定。FSAN 组织选择了TWDM-PON 作为主要技术方案,采用4/8波长叠加方式,每波长采用10G TDM方式,在移动回传和商业客户中可选择点对点的WDM overlay 技术。NGPON2 的关键需求主要为40G 下行和40G/10G 上行, 实现20km 传输距离和1:64 分光。ITU标准组织也在关注单波25G的研究进展,预计近期将启动25G-PON的标准制定。 2013年IEEE开始启动NG-EPON研究,成立了IEEE ICCOM对NG-EPON的市场需求、技术方案进行分析,2015年3月发布了NG-EPON技术白皮书。2015年7月开始启动100G-EPON标准制定,命名为IEEE 802.3ca ,预计在2018年发布100G-EPON标准。100G-EPON目标定义了3种MAC层速率25G,50G和100G。其中25G分为非对称 10G/25G和对称25G/25G二种制式。 2 25G/100G-PON调制技术分析 由于接入网技术升级快,规模巨大,投入高,高性能和低成本一直是决定接入网技术演进的关键因素。其中光器...

40G QSFP+ SR4 LR4 ER Sinovo Telecom

40G QSFP + SR4 IEEE 802.3bm, 802.3ba, SFF-8436 4 voies optiques indépendantes Vitesse de ligne de 10,3 Gb / s, 14,1 Gb / s Interface QSFP + MPO Jusqu'à 300 m de distance 40G QSFP + LR4 IEEE 802.3bm, 802.3ba, SFF-8436 4 voies optiques indépendantes Emetteur: 4 x CWDM non refroidi DFB LD (1271 1291 1311 1331nm) Interface QSFP + Duplex LC Jusqu'à 10 km de distance 40G QSFP + ER4 IEEE 802.3bm, 802.3ba, SFF-8436 4 voies optiques indépendantes Interface QSFP + Duplex LC Jusqu'à 40 km de distance

100G QSFP28 DAC (cable de conexión directa) Y AOC (cable óptico activo) Sinovo

100G QSFP28 AOC (cable óptico activo) 100G QSFP28 a 100G QSFP28 AOC 100G QSFP28 a 2 x QSFP + (50G) AOC 100G QSFP28 a 4 x SFP28 (25G) AOC Interconectividad de alta densidad de 100Gb / s. Bajo peso para arquitecturas de alto conteo de puertos Radio de curvatura pequeño para una fácil instalación y manejo de fibra. Excelente integridad de señal Hasta 100M para Infiniband EDR, 4 x 25 y 100G Ethernet. 100G QSFP28 DAC (cable de conexión directa) 100G QSFP28 a 100G QSFP28 DAC 100G QSFP28 a 2 x QSFP + (50G) DAC 100G QSFP28 a 4 x SFP28 (25G) DAC Cables divisores de cobre pasivos Protección de 360 ​​° para un rendimiento EMI / EMC superior Totalmente compatible con todas las especificaciones relevantes de SFF y IEEE Longitudes disponibles desde 0.5M hasta 10M